

Datasheet

4x2,2Pt1000A-G

132013

Summary

.

This platinum temperature sensor element is characterized by the material of the lead wire. Typically, it is used in the automotive industry and in air conditioning and heating.

Dimensions in mm

L	W	L ₁	Н	Ø
4 + 0,2 - 0,1	2,1 ± 0,2	10 ± 1	0,9 + 0,3 - 0,2	0,2 ± 0,02

Technical specifications

Nominal resistance R ₀ at 0°C	Specification	Tolerance	Order Number	Item Number
1000 Ω	DIN EN 60751	F 0,15 (DIN A)	4x2,2Pt1000A-G	132013

Temperature range:	-70 °C to +500 °C in continuous operation (briefly up to 550 °C possible)				
	Validity of tolerance F 0,15: -50 °C	C to +300 °C			
Temperature coefficient:	TK = 3850 ppm/K				
Connecting wires:	NiPt coated wire, suitable for crimping, welding and brazing				
Long-term stability:	max. R0 - drift 0.0 4 % after 1000 h at 500 °C				
Vibration resistance:	At least 40 g acceleration at 10 to 2000 Hz, depends on installation				
Shock resistance:	at least 100 g acceleration with 8 ms half sine wave, depends on installation				
Environmental conditions:	unprotected only in dry environments				
Insulation resistance:	> 100 Milliohms at 20 °C > 2 Milliohms at 500 °C				
Self-heating:	0.3 K / mW at 0 °C				
Response:	water current (v = 0.4m/s):	_{t0,5} = 0,07 s	_{t0,9} = 0,20 s		
	Air flow (v = 2 m/s):	_{t0,5} = 3,2 s	_{t0,9} = 11 s		
Measuring current:	0,1 to 3 mA (consider self-heating)				
Measuring point:	8 mm from the end of the sensor element body				
Packaging:	Taped				
Note:	Please refer to our application and installation instructions.				
RoHS compliant					

We reserve the right to make technical changes. All technical data serves as information and does not guarantee properties.